Response of Crops to Limited Water Understanding and Modeling Water Stress Effects on Plant Growth Processes

Response of Crops to Limited Water Understanding and Modeling Water Stress Effects on Plant Growth Processes

L.R. Ahuja, V.R. Reddy, S.A. Saseendran, and Qiang Yu, Editors

Book and Multimedia Publishing Committee

David Baltensperger, Chair Kenneth Barbarick, ASA Editor-in-Chief Craig Roberts, CSSA Editor-in-Chief Sally Logsdon, SSSA Editor-in-Chief Mary Savin, ASA Representative Hari Krishnan, CSSA Representative April Ulery, SSSA Representative

Managing Editor: Lisa Al-Amoodi

Advances in Agricultural Systems Modeling 1 Transdisciplinary Research, Synthesis, and Applications

Laj Ahuja, Series Editor

Copyright © 2008 by American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc.

ALL RIGHTS RESERVED. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.

The views expressed in this publication represent those of the individual Editors and Authors. These views do not necessarily reflect endorsement by the Publisher(s). In addition, trade names are sometimes mentioned in this publication. No endorsement of these products by the Publisher(s) is intended, nor is any criticism implied of similar products not mentioned.

American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc. 677 South Segoe Road, Madison, WI 53711-1086 USA

ISBN: 978-0-89118-167-5

Library of Congress Control Number: 2008937260

Cover design: Patricia Scullion Photo: David Drexler

Printed in the United States of America.

Contents

Foreword Preface	vii ix
1	1
Current Water Deficit Stress Simulations in Selected Agricultural System Models S.A. Saseendran, L.R. Ahuja, L. Ma, D. Timlin, C.O. Stöckle, K.J. Boote, and G. Hoogenboom	-
2	39
On the Use of Radiation- and Water-Use Efficiency for Biomass Production Models C.O. Stöckle, A.R. Kemanian, and C. Kremer	
3	59
Experience with Water Balance, Evapotranspiration, and Predictions of Water Stress Effects in the CROPGRO Model K.J. Boote, F. Sau, G. Hoogenboom, and J.W. Jones	
4	105
Simulation of the Effects of Limited Water on Photosynthesis and Transpiration in Field Crops: Can We Advance Our Modeling Approaches? D. Timlin, J. Bunce, D. Fleisher, .V.R. Reddy, Y. Yang, SH. Kim, S.A. Saseendran, and B. Quebedeaux	
5	1/15
Modeling the Dynamics of Water Flow through Plants, Role of Capacitance in Stomatal Conductance, and Plant Water Relations A. Tuzet and A. Perrier	145
6	165
A Canopy Transpiration and Photosynthesis Model for Evaluating Simple Crop Productivity Models C. Kremer, C.O. Stöckle, A.R. Kemanian, and T. Howell	100
7	191
Extending the Simultaneous Heat and Water (SHAW) Model to Simulate Carbon Dioxide and Water Fluxes over Wheat Canopy	1.71

Q. Yu and G.N. Flerchinger

Modeling Water and Nitrogen Interaction Responses and Their Consequences

L. Wu and K.C. Kersebaum Ο 251 Towards Modeling the Function of Root Traits for Enhancing Water Acquisition by Crops J.A. Postma, R.E. Jaramillo, and J.P. Lynch 10 277 Simulating Crop Phenological Responses to Water Deficits G.S. McMaster, J.W. White, A. Weiss, P.S. Baenziger, W.W. Wilhelm, J.R. Porter, and P.D. Jamieson 301 Impacts of Drought and/or Heat Stress on Physiological, Developmental, Growth, and Yield Processes of Crop Plants P.V.V. Prasad, S.A. Staggenborg, and Z. Ristic

215

387

411

423

435

357 Measuring and Modeling the Stress Response of Grapevines to Soil-Water Deficits

S. Green, B. Clothier, C. van den Dijssel, M. Deurer, and P. Davidson

13

Exploring the Use of the Environmental Productivity Index Concept for Crop Production and Modeling

K.R. Reddy, V.G. Kakani, and H.F. Hodges

14

Synthesis, Actions, and Further Research to Improve Response of Crop System Models to Water Stress L.R. Ahuja, S.A. Saseendran, V.R. Reddy, and Q. Yu

Index About the Series

8

in Crop Models

The launch of a new series is exciting, and the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America are proud to announce the new book series entitled Advances in Agricultural Systems Modeling. Our Societies believe that future breakthroughs in science and technology lie at the boundaries of disciplines, and this series is intended to encourage transdisciplinary and interdisciplinary research and its synthesis to solve practical problems.

Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes is an excellent first book in this series. We believe that this book will be of great importance to all scientists, modelers, and students working in water-limited crop production systems. The cast of internationally known authors has done an excellent job of synthesizing the state-of-the-science in a straightforward and instructive manner. The volume should be of particular value for graduatelevel teaching.

The Societies appreciate the efforts of series editor Dr. Laj Ahuja, who assembled an impressive group of authors and developed a thoughtful book, with the indispensable synthesis that is missing from many similar titles. We also thank co-editors V.R. Reddy, S.A. Saseendran, and Qiang Yu.

Kenneth J. Moore

President of the American Society of Agronomy

William J. Wiebold

President of the Crop Science Society of America

Gary A. Peterson

President of the Soil Science Society of America

Preface

The semiarid regions of the western United States, India, China, and other parts of the world produce a major portion of the world's food and fiber needs-from staple food grains of wheat, rice, and corn to vegetables, fruits, nuts, wine, cotton, and forage crops for cattle and poultry. Most of this production in the semiarid lands is achieved with irrigation. Over all agricultural land in the world, irrigation is practiced on about 20% of the area, but accounts for about 40% of the production. Many populous regions of the world, such as south and east Asia, are dependent on irrigation to meet food requirements. However, due to increased in population, urbanization, and environmental consciousness, the water demands for drinking, sanitation, urban irrigation, industry, and environmental uses are outbidding and reducing the water available for agriculture. Shrinkage of groundwater resources, such as the depletion of aquifers in India, China, and the United States, and prolonged drought in the last few years have aggravated the situation. The greater frequency of more severe droughts predicted by some global climate change models is cause for great concern. In addition, global warming appears to be increasing the water requirements (evapotranspiration demand) of plants. So, the questions for the world are: How can irrigated agriculture sustain productivity and meet the growing need for food and fiber with reduced water available for irrigation? What research knowledge and technologies are needed to accomplish this sustainability?

The answers lie, along with other supporting measures, in simultaneously achieving:

- the conservation of both rain and irrigation water in the field by managing to cut losses from runoff, deep percolation, and evaporation
- the preservation of the quality of groundwater and soil by preventing salinity development and nitrate and pesticide pollution
- achieving increased water use efficiency of crops by optimizing irrigation with respect to rainfall, critical growth stages, soil fertility, and weather conditions; smart allocation of limited water among crops; and advantageous selection of crops by region, with selection of alternate crops in drought years

These goals will require a whole-system quantitative approach to guide management and achieve optimization of water application and crop performance, while protecting water quality and the environment. The computer models of agricultural systems are the essential technology needed for this purpose.

The system modeling technology will also help conserve and make the most use of rainwater in rainfed agricultural areas, including water-limited cropping or forage–livestock systems. These areas comprise about 60% of the agriculture in the world. Prolonged drought in the last few years has especially stressed these dryland areas. The farmers and ranchers need

simple tools to manage the systems during droughts. These tools can be derived from system models.

Our experience has shown that all key current models of agricultural systems, although adequate for some purposes, need further improvement in the area of simulating the response of crops to limited water under various management and application options required for the above-noted applications. For this purpose, we hosted the 36th annual conference of the Biological Systems Simulation Group here in Fort Collins, CO, April 11–13, 2006, and organized a one-day special session on "Recent Advances" in Understanding and Modeling of Water Stress (Water Deficit) Effects on Plant Growth Processes." We invited and were fortunate to hear from the world's experts in various aspects of this topic. The speakers briefly provided the current state of science but emphasized more recent knowledge of the stress effects on processes that can be used to improve our models for crop responses to limited water applied at different growth stages. The purpose of this book then is to document this highly valuable knowledge and provide much needed synthesis and analysis, with the goal of improving these models and expanding the benefits of their use.

The book will be indispensable for scientists, researchers, modelers, and students working in crop production under limited water. The stateof-the-science syntheses given in each chapter will be highly useful, especially for graduate-level teaching. The new models or component codes will be valuable for graduate-level teaching, research, and training in the use of models.

All the chapters in this volume have been reviewed by two or more independent reviewers and by the editors for originality and quality. We ensured that even the review chapters made original contributions to synthesis of knowledge and/or development of new and improved concepts.

L.R. Ahuja

USDA-ARS, Agricultural Systems Research Unit Fort Collins, Colorado

V.R. Reddy

Crop Systems and Global Change Research Laboratory, USDA-ARS Beltsville, Maryland

S.A. Saseendran

Colorado State University and USDA-ARS Agricultural Systems Research Unit, Fort Collins, Colorado

Qiang Yu

Institute of Geophysical Sciences and Natural Resources Research Chinese Academy of Sciences, Beijing, P. R. China

Contributors

L.R. Ahuja	USDA-ARS, Agricultural Systems Research Unit, 2150 Centre Ave., Bldg. D, Fort Collins, CO 80526 (Laj.Ahuja@ARS.USDA.GOV)
P.S. Baenziger	Dep. of Agronomy and Horticulture, Univ. of Nebraska, Lincoln, NE 68583 (agro104@unl.edu)
K.J. Boote	Dep. of Agronomy, Univ. of Florida, Gainesville, FL 32611 (kjb@mail.ifas.ufl.edu)
James Bunce	USDA-ARS, Crop Systems and Global Change Lab., 10300 Baltimore Ave., Bldg. 001 BARC-WEST, Beltsville, MD 20705 (james.bunce@ars.usda.gov)
Brent Clothier	Sustainable Land Use Team, The Horticulture and Food Research Inst. of New Zealand Limited, Private Bag 11 030, Palmerston North 4442, New Zealand (bclothier@hortresearch.co.nz)
Pete Davidson	Marlborough District Council, Blenheim 7240, New Zealand (Peter.davidson@marlborough.govt.nz)
Markus Deurer	Sustainable Land Use Team, The Horticulture and Food Research Inst. of New Zealand Limited, Private Bag 11 030, Palmerston North 4442, New Zealand (mdeurer@hortresearch.co.nz)
David Fleisher	USDA-ARS, Crop Systems and Global Change Lab., 10300 Baltimore Ave., Bldg. 001 BARC-WEST, Beltsville, MD 20705 (david.fleisher@ars.usda.gov)
Gerald N. Flerchinger	USDA-ARS, Northwest Watershed Research Center, Boise, ID 83712 (gerald.flerchinger@ars.usda.gov)
Steve Green	Sustainable Land Use Team, The Horticulture and Food Research Inst. of New Zealand Limited, Private Bag 11 030, Palmerston North 4442, New Zealand (sgreen@hortresearch.co.nz)
Harry F. Hodges	Dep. of Plant and Soil Sciences, Mississippi State Univ., 117 Dorman Hall, Box 9555, Mississippi State, MS 39762 (Hodgesse@aol.com)
G. Hoogenboom	Dep. of Biological and Agricultural Engineering, College of Agricultural and Environmental Sciences, The Univ. of Georgia, Griffin, GA 30223 (gerrit@uga.edu)
Terry Howell	USDA-ARS Conservation and Production Research Laboratory, Bushland, TX 79012 (Terry.Howell@ARS.USDA.GOV)
P.D. Jamieson	New Zealand Inst. for Crop & Food Research, PB4704, Christchurch, New Zealand (jamiesonp@crop.cri.nz)
Raul E. Jaramillo	Pennsylvania State Univ., University Park, PA 16802 (rej118@psu.edu)
James W. Jones	Agricultural and Biological Engineering Dep., Univ. of Florida, P.O. Box 110570, Museum Road, Room 289, Gainesville, FL 32611 (jimj@ufl.edu)
Vijaya Gopal Kakani	Dep. of Plant and Soil Sciences, Oklahoma State Univ., 368 Agricultural Hall, Stillwater, OK 74078-6028 (v.g.kakani@okstate.edu)
Armen R. Kemanian	Texas Agricultural Experiment Station, Blackland Research and Extension Center, Temple, TX 76502 (akemanian@brc.tamus.edu)
K. Christian Kersebaum	Leibniz-Centre for Agricultural Landscape Research, Inst. for Landscape Systems Analysis, D-15374 Muencheberg, Germany (ckersebaum@zalf.de)
Soo-Hyung Kim	Univ. of Washington, Botanic Gardens, 3501 NE 41st Street, Box 354115, Seattle, WA 98195-4115 (soohkim@u.washington.edu)
Cristián Kremer	Univ. of Chile, College of Agricultural Sciences, Casilla 1004, Santiago, Chile (ckremer@uchile.cl)

xii

Jonathan P. Lynch	Dep. of Horticulture, Pennsylvania State Univ., 102 Tyson, University Park, PA 16802 (JPL4@psu.edu)
L. Ma	USDA-ARS, Agricultural Systems Research Unit, Room 2038, 2150 Centre Ave., Bldg. D, Ste. 200, Fort Collins, CO 80526 (Liwang.Ma@ars.usda.gov)
G.S. McMaster	USDA-ARS, Agricultural Systems Research Unit, 2150 Centre Ave. Bldg D Suite 200, Fort Collins, CO 80526 (Greg.McMaster@ars.usda.gov)
Alain Perrier	Environnement et Grandes Cultures, INRA-AgroParisTech, 78850 Thiverval Grignon, France (perrier@agroparistech.fr)
J.R. Porter	Dep. of Agricultural Sciences, Faculty of Life Sciences, Univ. of Copenhagen, 2630 Taastrup, Denmark (jrp@kvl.dk)
Jouke A. Postma	Pennsylvania State Univ., University Park, PA 16802 (jap441@psu.edu)
P.V.V. Prasad	Dep. of Agronomy, Kansas State Univ., Manhattan KS 66506 (vara@ksu.edu)
Bruno Quebedeaux	Plant Science & Landscape Architecture, Univ. of Maryland, Plant Science Bldg., Rm. 2130, College Park, MD 20742-4452 (bquebede@umd.edu)
K. Raja Reddy	Dep. of Plant and Soil Sciences, Mississippi State Univ., 117 Dorman Hall, Box 9555, Mississippi State, MS 39762 (krreddy@pss.msstate.edu)
V.R. Reddy	Crop Systems and Global Change Lab., USDA-ARS, 10300 Baltimore Ave., Bldg 001, Room 342, Beltsville, MD 20705 (vr.reddy@ars.usda.gov)
Z. Ristic	USDA-ARS, Plant Science and Entomology Research Unit, Manhattan KS 66506 (zristic@ksu.edu)
S.A. Saseendran	USDA-ARS, Agricultural Systems Research Unit, Fort Collins, CO 80526 (Saseendran.Anapalli@ARS.USDA.GOV)
Federico Sau	Dep. de Biologia Vegetal, Universidad Politecnica de Madrid 28040, Spain (federico.sau@upm.es)
S.A. Staggenborg	Dep. of Agronomy, Kansas State Univ., Manhattan KS 66506 (sstaggen@ksu.edu)
C.O. Stöckle	Dep. of Biological Systems Engineering, Washington State Univ., Pullman, WA 99164-6120 (stockle@wsu.edu)
D. Timlin	USDA-ARS, Crop Systems and Global Change Lab., 10300 Baltimore Ave., BARC- West, Bldg. 001, Rm. 342, Beltsville, MD 20705 (Dennis.Timlin@ars.usda.gov)
Andrée Tuzet	Environnement et Grandes Cultures, INRA-AgroParisTech, 78850 Thiverval Grignon, France (tuzet@grignon.inra.fr)
Carlo van den Dijssel	Sustainable Land Use Team, The Horticulture and Food Research Inst. of New Zealand Limited, Private Bag 11 030, Palmerston North 4442, New Zealand (cdijssel@hortresearch.co.nz)
Albert Weiss	School of Natural Resources, Univ. of Nebraska, P.O. Box 830987, Lincoln, NE 68583-0987 (aweiss1@unl.edu)
J.W. White	USDA-ARS, Arid Land Agric. Research Center, 21881 North Cardon Ln., Maricopa, AZ 85239 (jeffrey.white@ars.usda.gov)
W.W. Wilhelm	USDA-ARS, Agroecosystems Management Research Unit, Dep. of Agronomy and Horticulture, 120 Keim Hall, Univ. of Nebraska, Lincoln, NE 68583 (wally.wilhelm@ars.usda.gov)
Lianhai Wu	Crop and Soil Systems Research, SAC, Craibstone Estate, Aberdeen, AB21 9YA, UK (LianHai.Wu@sac.ac.uk)
Yang Yang	Wye Research and Education Center, University of Maryland, Queenstown, MD 21658 (yyang8@umd.edu)
Qiang Yu	Inst. of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P.R. China (yuq@igsnrr.ac.cn)

Conversion Factors for SI and Non-SI Units

To convert Column 1 into Column 2 multiply by	Column 1 SI unit	Column 2 non-SI unit	To convert Column 2 into Column 1 multiply by	
	Lei	ngth		
0.621	kilometer, km (10 ³ m)	mile, mi	1.609	
1.094	meter, m	yard, yd	0.914	
3.28	meter, m	foot, ft	0.304	
1.0	micrometer, µm (10 ⁻⁶ m)	micron, µ	1.0	
3.94 × 10 ⁻²	millimeter, mm (10 ⁻³ m)	inch, in	25.4	
10	nanometer, nm (10 ⁻⁹ m)	Angstrom, Å	0.1	
	A	rea		
2.47	hectare, ha	acre	0.405	
247	square kilometer, km ² (10 ³ m) ²	acre	4.05 × 10 ⁻³	
0.386	square kilometer, km ² (10 ³ m) ²	square mile, mi ²	2.590	
2.47 × 10 ⁻⁴	square meter, m ²	acre	4.05 × 10 ³	
10.76	square meter, m ²	square foot, ft ²	9.29 × 10 ⁻²	
1.55 × 10 ⁻³	square millimeter, mm ² (10 ⁻³ m) ²	square inch, in ²	645	
	Vol	ume		
9.73 × 10⁻³	cubic meter, m ³	acre-inch	102.8	
35.3	cubic meter, m ³	cubic foot, ft ³	2.83 × 10 ⁻²	
6.10 × 10 ⁴	cubic meter, m ³	cubic inch, in ³	1.64 × 10⁻⁵	
2.84 × 10 ⁻²	liter, L (10 ⁻³ m ³)	bushel, bu	35.24	
1.057	liter, L (10 ⁻³ m ³)	quart (liquid), qt	0.946	
3.53 × 10 ⁻²	liter, L (10 ⁻³ m ³)	cubic foot, ft ³	28.3	
0.265	liter, L (10 ⁻³ m ³)	gallon	3.78	
33.78	liter, L (10 ⁻³ m ³)	ounce (fluid), oz	2.96 × 10 ⁻²	
2.11	liter, L (10 ⁻³ m ³)	pint (fluid), pt	0.473	
Mass				
2.20 × 10⁻³	gram, g (10⁻³ kg)	pound, lb	454	
3.52 × 10 ⁻²	gram, g (10⁻³ kg)	ounce (avdp), oz	28.4	
2.205	kilogram, kg	pound, lb	0.454	
0.01	kilogram, kg	quintal (metric), q	100	
1.10 × 10 ⁻³	kilogram, kg	ton (2000 lb), ton	907	
1.102	megagram, Mg (tonne)	ton (U.S.), ton	0.907	
1.102	tonne, t	ton (U.S.), ton	0.907	
			Table cont.	

To convert Column 1 into Column 2	o Column 1 SI unit	Column 2 non-SI unit	To convert Column 2 into Column 1	
multiply by			multiply by	
	Viold a	nd Pate		
0 893	kilogram per bectare kg ha-1	pound per acre lb acre-1	1 12	
7.77 × 10 ⁻²	kilogram per cubic meter, kg m ⁻³	pound per bushel, lb bu ⁻¹	12.87	
1.49 × 10 ⁻²	kilogram per hectare, kg ha⁻¹	bushel per acre, 60 lb	67.19	
1.59 × 10 ⁻²	kilogram per hectare, kg ha-1	bushel per acre, 56 lb	62.71	
1.86 × 10 ⁻²	kilogram per hectare, kg ha-1	bushel per acre, 48 lb	53.75	
0.107	liter per hectare, L ha-1	gallon per acre	9.35	
893	tonne per hectare, t ha ⁻¹	pound per acre, lb acre ⁻¹	1.12 × 10⁻³	
893	megagram per hectare, Mg ha-1	pound per acre, lb acre-1	1.12 × 10⁻³	
0.446	megagram per hectare, Mg ha-1	ton (2000 lb) per acre, ton acre ⁻¹	2.24	
2.24	meter per second, m s ⁻¹	mile per hour	0.447	
	Specifi	c Surface		
10	square meter per kilogram, m ² kg ⁻¹	square centimeter per gram, cm ² g ⁻¹	0.1	
1000	square meter per kilogram, $m^2 kg^{-1}$	square millimeter per gram, mm² g⁻¹	0.001	
	De	nsity		
1.00	megagram per cubic meter, Mg m^{-3}	gram per cubic centimeter, g cm ⁻³	1.00	
	Pre	ssure		
9 90	meganascal MPa (10 ⁶ Pa)	atmosphere	0 101	
10	megapascal, MPa (10 ⁶ Pa)	har	0.101	
2 09 × 10 ⁻²	pascal. Pa	pound per square foot lb ft-2	47.9	
1.45 × 10 ⁻⁴	pascal, Pa	pound per square inch, lb in ^{-2}	6.90 × 10 ³	
	Iemp	erature		
1.00 (K – 273)	kelvin, K	Celsius, °C	1.00 (°C + 273)	
(9/5 °C) + 32	Celsius, °C	Fahrenheit, "F	5/9 (°F – 32)	
	Energy, Work, Quantity of Heat			
9.52 × 10 ⁻⁴	joule, J	British thermal unit, Btu	1.05 × 10 ³	
0.239	joule, J	calorie, cal	4.19	
10 ⁷	joule, J	erg	10 ⁻⁷	
0.735	joule, J	foot-pound	1.36	
2.387 × 10⁻⁵	joule per square meter, J m ⁻²	calorie per square centimeter (langley)	4.19 × 10 ⁴	
10⁵	newton, N	dyne	10 ⁻⁵	
1.43 × 10⁻³	watt per square meter, W m ⁻²	calorie per square centimeter minute (irradiance), cal cm ⁻² min ⁻¹	698	

Table cont.

To convert Column 1 into Column 2 multiply by	o Column 1 SI unit	Column 2 non-SI unit	To convert Column 2 into Column 1 multiply by
	Transpiration an	d Photosynthesis	
3.60 × 10 ⁻²	milligram per square meter second, mg m ⁻² s ⁻¹	gram per square decimeter hour, g dm ⁻² h^{-1}	27.8
5.56 × 10 ⁻³	milligram (H ₂ O) per square meter second, mg m ⁻² s ⁻¹	micromole (H ₂ O) per square centimeter second, umol cm ⁻² s ⁻¹	180
10-4	milligram per square meter second. mg m ⁻² s ⁻¹	milligram per square centimeter second. mg cm ⁻² s ⁻¹	104
35.97	milligram per square meter second, mg m ⁻² s ⁻¹	milligram per square decimeter hour, mg dm ⁻² h ⁻¹	2.78 × 10 ⁻²
	Plane	Angle	
57.3	radian, rad	degrees (angle), °	1.75 × 10⁻²
	Electrical Conductivity, E	electricity, and Magnetism	
10	siemen per meter, S m ⁻¹	millimho per centimeter, mmho cm ⁻¹	0.1
104	tesla, T	gauss, G	10 ⁻⁴
	Water Me	asurement	
9.73 × 10⁻³	cubic meter, m ³	acre-inch, acre-in	102.8
9.81 × 10⁻³	cubic meter per hour, m ³ h ⁻¹	cubic foot per second, ft3 s-1	101.9
4.40	cubic meter per hour, m ³ h ⁻¹	U.S. gallon per minute, gal min ⁻¹	0.227
8.11	hectare meter, ha m	acre-foot, acre-ft	0.123
97.28	hectare meter, ha m	acre-inch, acre-in	1.03 × 10 ⁻²
8.1 × 10 ⁻²	hectare centimeter, ha cm	acre-foot, acre-ft	12.33
	Conce	ntration	
1	centimole per kilogram, cmol kg-1	milliequivalent per 100 grams, meq 100 g ⁻¹	1
0.1	gram per kilogram, g kg⁻¹	percent, %	10
1	milligram per kilogram, mg kg-1	parts per million, ppm	1
Radioactivity			
2.7 × 10 ⁻¹¹	becquerel, Bq	curie, Ci	3.7 × 10 ¹⁰
2.7 × 10 ⁻²	becquerel per kilogram, Bg kg-1	picocurie per gram, pCi g ⁻¹	37
100	gray, Gy (absorbed dose)	rad, rd	0.01
100	sievert, Sv (equivalent dose)	rem (roentgen equivalent man)	0.01
Plant Nutrient Conversion			
	Elemental	Oxide	
2.29	Р	P ₂ O ₅	0.437
1.20	К	К,O	0.830
1.39	Са	CaO	0.715
1.66	Mg	MgO	0.602